(LS 478): Computational Biology and Bioinformatics

Course Faculty: Prof. Samudrala Gourinath, Prof. Ajay Saxena, Dr. Nirala Ramchiary, Dr. Karunakar Kar*

Credits: 2 credits, 29 Lectures

Method of Evaluation: Mid-semester and sessional – 50% End semester - 50% (weightage)

Objective of the course: This course will be primer to DNA and RNA sequence Analysis using computational methods and softwaretools. Overview of data analysis carried out by biologists will be covered with examples. **Learning outcomes from this course:**

- 1. Students get Practical Exposure to access and use of database resources and software tools
- 2. Enable students to perform DNA sequence data analysis using publicly available software tools
- 3. Will motivate students to understand primary research concepts and undertake simple projects on bioinformatics.

S. No.	Topics	No. of lectures (in hours)	Name of faculty
1	Brief description of the Course - Overview of Computational Biology: History, definition, applications – Research trajectory	1	AKS
2	Definition and concepts of Bioinformatics - biological data, databases, Examples of different databases and sources - Database searching using Boolean operators- Practical on database searching and data retrieval	3	AKS/S GN/KK
3	Overview of Prokaryotes and Eukaryotes - Mapping a DNA biomolecule to strings (4 letter, 2 letter and binary codes) – Gene and genome structure and sequence makeup	2	KK/NR
4	Overview of sequence analysis in practice – Compositions, Codon usage analysis, pattern finding, alignments, motifs, RNA secondary structure	2	SGN
5	Pairwise alignment – PAM and BLOSUM scoring matrices – Scoring models, with gaps and affine gaps - Global (Needleman and Wunsch) and local alignment (Smith – waterman) algorithms	2	AKS/ KK
6	Multiple Sequence alignment – Progressive methods – Consensus model – Position weight matrices. Protein sequence analysis, and predictions of important characteristics.	2	NR/KK
7	Database alignment – Overview of BLAST suite of programs – Computational approach – Statistical significance	2	NR
8	Practical demonstration of alignments with real DNA Sequence Data sets	1	NR
9	Amino acids and its analysis – Secondary structure prediction methods – methods – Motif finding – Protein Structure – Basics of Homology Modelling	4	AKS
10	RNA-structure and analysis: lncRNA, mRNA, SiRNA	1	NR
11	Phylogenetic tree construction, theory and practical	2	NR
12	Genome data – high throughput sequencing (NGS Platform) – Assembly and mapping of reads, and annotation with functional features – Practical use of scripts for NGS data analysis	3	NR
13	Overview of R-Seq, Chip-Seq data and its analysis	1	NR
14	Molecular Docking, Protein-ligand and Protein-protein interactions. Online tools, Data generation and analysis.	3	SGN, KK

Textbook:

- 1. Jonathan Pevsner. Bioinformatics and functional genomics. Wiley Blackwell, Third Edition, 2015
- 2. Des Higgins and William Taylor. Bioinformatics: Sequence, Structure, and databanks. Oxford University Press, 2001

Reference Book:

1. Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998