Ph.D. from Indian Institute of Technology (IIT) Roorkee, Roorkee-247667 (India).
M.Sc. (Mathematics) from CSJM, Kanpur University, Uttar Pradesh.
B.Sc. (Mathematics) from CSJM, Kanpur University, Uttar Pradesh.
Functional Analysis, Fourier Approximation, Summability Theory, Operator Theory, Fixed Point Theory, Fourier Optimization, Optimization Algorithms.
Associate Professor: JNU, New Delhi (March 2024 to till the date).
Assistant Professor Grade I: National Institute of Technology, Kurukshetra (January Oct. 2022 to March 2024).
Assistant Professor Grade II: National Institute of Technology, Kurukshetra (Aug. 2013 to Oct. 2022).
Ph.D.: IIT Roorkee (Aug. 2008 to Sep.2013).
1. CSIR-UGC JRF-NET Qualified in 2010.
2. GATE Qualified in 2008.
3. NCC certificate.
Research Project
Title: Study of degree of approximation and absolute summability factors of infinite series, Funded by SERB, DST, Amount Rs. 17,81,000.00 INR (2019-2022).
Sonker, S., Krasniqi, X. Z. and Munjal, A. (2023), Absolute |C,α,β;δ|_k summability factor of infinite series, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 34(1), 50-56, http://real.mtak.hu/id/eprint/187849.
Sonker, S., Krasniqi, X. Z. and Munjal, A. (2017), A Note on Absolute Cesàro ∅-|C;1;δ;1|_k Summability Factor, International Journal of Analysis and Applications, 15(1), 108-113.
- Sonker, S. and Devi, N. (2024), Artificial bee colony approach for MIMO ARX-Laguerre pole optimization, Discontinuity, Nonlinearity, and Complexity. (Accepted)
- Sonker, S. and Moond, P. (2023), Rate of Convergence of parametrically generalized bivariate Baskakov-Stancu operators, Filomat 37( 27), 9197-9214, DOI: 10.2298/FIL2327197S.
- Sonker, S., Devi, N., Bhusan Jena, B. and Kumar Paikray, S. (2023), Approximation and simulation of signals via harmonic Banach summable factors of Fourier series, Mathematical Methods in the Applied Sciences, 46(12), 13411-13422, DOI:10.1002/mma.9260.
- Sonker, S., and Sangwan, P. (2023), Approximation of signal belonging to W' (Lp ξ(t)) class by generalized Cesàro-Euler (Cα,η. Eθ) operator of conjugate Fourier series. Journal of the Indian Mathematical Society, 90(1-2), DOI: 10.18311/jims/2023/31305.
- Sonker, S. and Jindal, R. (2023), On approximation of signals belonging to some classes by (N,p_m,q_m)(E,θ)(E,θ)means of conjugate series of its Fourier series, The Journal of Analysis, 31(1), 501-518, DOI: 10.1007/s41478-022-00455-5.
- Sonker, S. and Munjal, A. (2023), Indexed Absolute Almost Convoluted Nörlund Summability. Transactions of A. Razmadze Mathematical Institute, 177(1), 111-118.
- Sonker, S. and Jindal, R. (2022), Application of almost increasing sequence for absolute Riesz |N ̃,P_(α,β),N;δ;Γ|k summable factor, Journal of the Indian Mathematical Society, 89(1-2), 172-181, DOI: 10.18311/jims/2022/29313.
- Sonker, S., Krasniqi, X. Z. and Munjal, A. (2023), Absolute |C,α,β;δ|_k summability factor of infinite series, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 34(1), 50-56, http://real.mtak.hu/id/eprint/187849.
Book Chapter
- Sonker, S. and Munjal, A. (2018), Fourier series and its Applications in Engineering, CRC Press,Taylor and Francis Group, USA. CRC Press, Taylor and Francis Group, USA, DOI: 10.1201/b22440. (ISBN:9781138554399)
- Sonker, S. and Munjal, A. (2017), Summability techniques and their applications in Soft Computing, IGI Global USA, DOI: 10.4018/978-1-5225-3035-0.ch013. (ISBN:9781522530350)
- Sonker, S., Jena, B. B., Jindal, R., and Paikray, S. K. (2022), A generalized theorem on double absolute factorable matrix summability, Appl. Math. Inf. Sci, 16(2), 315-322, DOI: 10.18576/amis/160219.
- Sonker, S., and Sangwan, P. (2021), Approximation of Signals by Harmonic-Euler Triple product means, Journal of the Indian Mathematical Society, 88, DOI: 10.18311/jims/2021/26084.
- Sonker, S., and Munjal, A. (2019), Sufficient Conditions for Absolute Cesàro Summable Factor, International Journal of Mathematical, Engineering and Management Sciences, 4(3), 627, DOI: 10.33889/IJMEMS2019.4.3-050.
- Sonker, S., and Munjal, A. (2019), Absolute |C,1|_ksummability factor of improper integrals, Publications de l'Institut Mathematique, 105(119), 179-184, DOI: 10.2298/PIM1919179s.
- Sonker, S., and Munjal, A. (2019), Application of Quasi-l-Power Increasing Sequence in |C,a,b;1|_k Summability, Proceedings of the Jangjeon Mathematical Society, 22(1),185-192, DOI: 10.17777/Pjms2019.22.1.185.
- Sonker, S., and Munjal, A. (2018), Application of Almost Increasing Sequence for Absolute Riesz |N,p_(n^α );δ;γ|_k Summable Factor, Pertanika Journal of Science and Technology, 26(2).
- Sonker, S., and Munjal, A. (2018), On generalized absolute Riesz summability factor of infinite series, Kyungpook Mathematical Journal, 58(1), 37-46.
- Sonker, S., Krasniqi, X. Z., and Munjal, A. (2017), A Note on Absolute Cesàro ∅-|C;1;δ;1|_k Summability Factor, International Journal of Analysis and Applications, 15(1), 108-113.
- Sonker, S., and Munjal, A. (2017), Approximation of the function fϵL(α,p) using infinite matrices of Cesàro submethod, Nonlinear Studies, 24(1).
- Sonker, S., and Munjal, A. (2017), Absolute ∅-|C,α,β;δ|_ksummability of infinite series, Journal of Inequalities and Applications, 2017, 1-7, DOI: 10.1186/s13660.017-1445-5.
- Sonker, S., and Munjal, A. (2017), Absolute summability factor |N,p_n|k of improper integrals, International Journal of Engineering and Technology, 9(3S), 457-462, DOI:10.21817/ijet/2017/09i3/170903s071.
- Sonker, S., and Munjal, A. (2016), Absolute Summability factor ∅-|C,1,δ|_k of infinite series, International Journal of Mathematical Analysis, 10(23), 1129-1136, DOI: 10.12988/ijma.2016.6690.
- Sonker, S., and Munjal, A. (2016). Sufficient conditions for triple matrices to be bounded, Nonlinear Studies, 23(4), 533-542.
- Singh, U., and Sonker, S. (2012). Trigonometric Approximation of signals (functions) belonging to weighted (L_p,ξ(t))-class by Hausdörff means, Applied Mathematics and Approximation Theory, May 17-20, 2012–Ankara–Turkey, 108.
- Singh, U., Mittal, M. L., and Sonker, S. (2012), Trigonometric Approximation of Signals (Functions) Belonging to W (L^p,ξ(t)) Class by Matrix (C^1.N_p) Operator, International Journal of Mathematics and Mathematical Sciences, 2012, DOI: 10.1155/2012/964101.
- Sonker, S., and Singh, U. (2012), Degree of approximation of the conjugate of signals (functions) belonging to Lip(α,r)-class by (C,1)(E,q) means of conjugate trigonometric Fourier series, Journal of inequalities and applications, 2012, 1-7.
- Mittal, M. L., Rhoades, B. E., Sonker, S., and Singh, U. (2011), Approximation of signals of class Lip(α,p) by linear operators, Applied Mathematics and Computation, 217(9), 4483-4489, DOI: 10.1016/j.amc.2010.10.051.
-